Pneumatic Conveying Engineering

Particle technology is a term used to refer to the science and technology related to the handling and processing of particles and powders. The production of particulate materials, with controlled properties tailored to subsequent processing and applications, is of major interest to a wide range of industries, including chemical and process, food, pharmaceuticals, minerals and metals companies and the handling of particles in gas and liquid solutions is a key technological step in chemical engineering. This textbook provides an excellent introduction to particle technology with worked examples and exercises. Based on feedback from students and practitioners worldwide, it has been newly edited and contains new chapters on slurry transport, colloids and fine particles, size enlargement and the health effects of fine powders. Topics covered include: Characterization (Size Analysis) Processing (Granulation, Fluidization) Particle Formation (Granulation, Size Reduction) Storage and Transport (Hopper Design, Pneumatic Conveying, Standpipes, Slurry Flow) Separation (Filtration, Settling, Cyclones) Safety (Fire and Explosion Hazards, Health Hazards) Engineering the Properties of Particulate Systems (Colloids, Respirable Drugs, Slurry Rheology) This book is essential reading for undergraduate students of chemical engineering on particle technology courses. It is also valuable supplementary reading for students in other branches of engineering, applied chemistry, physics, pharmaceutics, mineral processing and metallurgy. Practitioners in industries in which powders are handled and processed may find it a useful starting point for gaining an understanding of the behavior of particles and powders. Review of the First Edition taken from High Temperatures - High pressures 1999 31 243 – 251 "...This is a modern textbook that presents clear-cut knowledge. It can be successfully used both for teaching particle technology at universities and for individual study of engineering problems in powder processing."

Gas-solid flows are involved in numerous industrial processes and occur in various natural phenomena. This authoritative book addresses the fundamental principles that govern gas-solid flows and the application of these principles to various gas-solid flow systems. The book is arranged in two parts: Part I deals with basic relationships and phenomena, including particle size and properties, collision mechanics, momentum transfer, heat and mass transfer, basic equations, and intrinsic phenomena in gas-solid flows. Part II discusses gas-solid flow systems of industrial interest such as gas-solid separators, hoppers and standpipes, dense-phase fluidized beds, fluidized beds, pneumatic conveying systems, and heat and mass transfer in fluidization systems. As a comprehensive text on gas-solid flows, which includes end-of-chapter problems, this book is aimed at students, but will also be useful to a broad range of engineers and applied scientists. Solutions manual available.

Pneumatic conveying systems offer enormous advantages: flexibility in plant layout, automatic operation, easy control and monitoring, and the ability to handle diverse materials, especially dangerous, toxic, or explosive materials. The Handbook of Pneumatic Conveying Engineering provides the most complete, comprehensive reference on all types and s

The Best On-the-Job Guide to Industrial Plant Equipment and Systems This practical, one-of-a-kind field manual explains how equipment in industrial facilities operates and covers all aspects of commissioning relevant to engineers and project managers. Plant Equipment and Maintenance Engineering Handbook contains a data log of all major industrial and power plant components, describes how they function, and includes rules of thumb for operation. Hundreds of handy reference materials, such as calculations and tables, plus a comprehensive listing of electrical parts with common supplier nomenclature are also included in this time-saving resource. FEATURES DETAILED COVERAGE OF: Compressors * Air conditioning * Ash handling * Bearings and lubrication * Boilers * Chemical cleaning and Flushing * Condensers and circulating water systems * Controls * Conveyor systems * Cooling towers * Corrosion Deaerators * Diesel and gas turbines * Electrical * Fans * Fire protection * Fuels and combustion * Piping * Pumps Turbines * Vibration * Water treatment

The book concentrates on powder flow properties, their measurement and applications. These topics are explained starting from the interactions between individual particles up to the design of silos. A wide range of problems are discussed – such as flow obstructions, segregation, and vibrations. The goal is to provide a deeper understanding of the powder flow, and to show practical solutions. This handbook presents comprehensive coverage of the technology for conveying and handling particulate solids. Each chapter covers a different topic and contains both fundamentals and applications. Usually, each chapter, or a topic within a chapter, starts with one of the review papers. Chapter 1 covers the characterization of the particulate materials. Chapter 2 covers the behaviour of particulate materials during storage, and presents recent developments in storage and feeders design and performance. Chapter 3 presents fundamental studies of particulate flow, while Chapters 4 and 5 present transport solutions, and the pitfalls of pneumatic, slurry, and capsule conveying. Chapters 6, 7 and 8 cover both the fundamentals and development of processes for particulate solids, starting from fluidisation and drying, segregation and mixing, and size-reduction and enlargement. Chapter 9 presents environmental aspects and the classification of the particulate materials after they have been handled by one of the above-mentioned processes. Finally, Chapter 10 covers applications and developments of measurement techniques that are the heart of the analysis of any conveying or handling system.

This volume, Fluidization, Solids Handling, and Processing, is the first of a series of volumes on "Particle Technology". Particles are important products of chemical process industries spanning the basic and specialty chemicals, agricultural products, pharmaceuticals, paints, dyestuffs and pigments, cement, ceramics, and electronic materials. Solids handling and processing technologies are thus essential to the operation and competitiveness of these industries. Fluidization technology is employed not only in chemical production, it also is applied in coal gasification and combustion for power
Where To Download Pneumatic Conveying Engineering

development, mineral processing, food processing, soil washing and other related waste treatment, environmental remediation, and resource recovery processes. The FCC (Fluid Catalytic Cracking) technology commonly employed in the modern petroleum refineries is also based on fluidization principles.

The Pneumatic Conveying Design Guide will be of use to both designers and users of pneumatic conveying systems. Each aspect of the subject is discussed from basic principles to support those new to, or learning about, this versatile technique. The Guide includes detailed data and information on the conveying characteristics of a number of materials embracing a wide range of properties. The data can be used to design pneumatic conveying systems for the particular materials, using logic diagrams for design procedures, and scaling parameters for the conveying line configuration. Where pneumatic conveyors already exist, the improvement of their performance is considered, based on strategies for optimizing and up-rating, and the extending of systems or adapting them for a change of material is also considered. All aspects of the pneumatic conveying system are considered, such as the type of material used, conveying distance, system constraints including feeding and discharging, health and safety requirements, and the need for continuous or batch conveying. * Highly practical, enabling suppliers and users to choose, design, and build suitable systems with a high degree of confidence * Health and safety requirements taken into consideration in the safe conveying methods described in this book * Practical application combined with background theory makes this an excellent resource for those learning about the topic

This book is a comprehensive, practical guide and reference to today's mechanical conveyor systems. It covers all types of mechanical conveyors, providing in-depth information on their design, function and applications. More than 180 photographs and schematics illustrate details of design and system layout. An introductory chapter provides an understanding of the characteristics of various types of bulk solids, including their conveyability and the types of conveying systems most effective for each. Following chapters examine each of five major categories of conveying systems, with practical details on their design, operation and applications. The final chapter presents basic information on motors and drives for conveying systems, as well as related equipment such as speed reduction systems and conveyor brakes. The emphasis throughout the text is on practical engineering and operating information, with a minimum of theory. The presentation is systematic and organized for easy reference. A very detailed index enables the quick location of needed information. This guide and reference will be useful to all engineers and other personnel involved in the continuous movement of bulk solids. It serves as both a basic introduction and a desk-top reference. The Authors Dr. Fayed is a Professor and Director of the Powder Science & Technology Group at Ryerson Polytechnic University in Toronto. He is also a licensed Consulting Engineer, a Fellow of the American Institute of Chemical Engineers and the Canadian Society of Chemical Engineering. Previously he held positions in process design and development with ICI, Davy McKee, M. W. Kellogg, and Peabody. He has lectured at numerous seminars and workshops at meetings of the American Institute of Chemical Engineers, and other organizations. He has published many papers on particulate technology and is the co-editor of Powder Science & Technology Handbook. Thomas Skocir in an engineer presently with ECO-TEC

Whenever a curved surface interacts with another surface, the principles of adhesion are at work. From the cells in your body to the dust on your glasses, intermolecular forces cause materials to attract one another. Elastic deformations resulting from these adhesive interactions store strain that can be liberated during particle detachment. Time dependent changes in adhesion can result from plastic deformation that both increases the real effective contact area and reduces the stored energy available to assist in particle removal. Processes such as these, based on the fundamentals tenets of particle adhesion, are now finding applications across many disciplines leading to a rich and rapid development of knowledge. This book documents the use of particle adhesion concepts in a variety of disciplines. Fields as varied as the cleaning of semiconductors, to the controlling of cancer metastasis, to the abatement of environmental pollution all benefit from applications of particle adhesion concepts.

Bulk Solids Handling: Equipment Selection and Operationprovides an overview of the major technologies involved in the storage and handling of particulate materials from large grains to fine cohesive materials. Topics covered include characterisation of individual particles and bulk particulate materials, silo design for strength and flow, pneumatic conveying systems, mechanical conveying, and small scale operations. Guidance is given on appropriate equipment choices depending on the type of material to be handled, and applications and limitations of current bulk solids handling equipment are discussed. Sponsored jointly by the American Society of Mechanical Engineers and International Material Management Society, this single source reference is designed to meet today's need for updated technical information on planning, installing and operating materials handling systems. It not only classifies and describes the standard types of materials handling equipment, but also analyzes the engineering specifications and compares the operating capabilities of each type. Over one hundred professionals in various areas of materials handling present efficient methods, procedures and systems that have significantly reduced both manufacturing and distribution costs.

Accepted as the standard reference work on modern pneumatic and compressed air engineering, the new edition of this handbook has been completely revised, extended and updated to provide essential up-to-date reference material for engineers, designers, consultants and users of fluid systems. Pneumatic conveying systems offer enormous advantages: flexibility in plant layout, automatic operation, easy control and monitoring, and the ability to handle diverse materials, especially dangerous, toxic, or explosive materials. The Handbook of Pneumatic Conveying Engineering provides the most complete, comprehensive reference on all types and sizes of systems, considering their selection, design, maintenance, and optimization. It offers practical guidelines, diagrams, and procedures to assist with plant maintenance, operation, and control. With well over fifty years of combined experience in the field, the authors promote practical, valuable approaches to test, evaluate, and correct both old and newly constructed systems. They include abundant checklists and approaches for preventing component wear, material degradation, and operating dilemmas and suggest lists of alternate materials and components to use if erosion does occur. Comparing various conveying system types, components, and flow mechanisms, the book explains the function of material flow, recommends conveying air velocity for different types of materials, and examines the conveying characteristics of a broad array of materials with emphasis on their impact on system performance. Brimming with invaluable checklists, models, guidelines, diagrams, and illustrations, the Handbook of Pneumatic Conveying Engineering is simply the most authoritative guide to pneumatic conveying available and a critical tool for your everyday work.

When the four of us decided to collaborate to write this book on pneumatic conveying, there were two aspects which
were of some concern. Firstly, how could four people, who live on four different continents, write a book on a fairly complex subject with such wide lines of communications? Secondly, there was the problem that two of the authors are chemical engineers. It has been noted that the majority of chemical engineers who work in the field of pneumatic conveying research have spent most of their time considering flow in vertical pipes. As such, there was some concern that the book might be biased towards vertical pneumatic conveying and that the horizontal aspects (which are clearly the most difficult!) would be somewhat neglected. We hope that you, as the reader, are going to be satisfied with the fact that you have a truly international dissertation on pneumatic conveying and, also, that there is an even spread between the theoretical and practical aspects of pneumatic conveying technology.

Suitable for practicing engineers and engineers in training, this book covers the most important operations involving particulate solids. Through clear explanations of theoretical principles and practical laboratory exercises, the text provides an understanding of the behavior of powders and pulverized systems. It also helps readers develop skills for operating, optimizing, and innovating particle processing technologies and machinery in order to carry out industrial operations. The author explores common bulk solids processing operations, including milling, agglomeration, fluidization, mixing, and solid-fluid separation.

This reference details particle characterization, dynamics, manufacturing, handling, and processing for the employment of multiphase reactors, as well as procedures in reactor scale-up and design for applications in the chemical, mineral, petroleum, power, cement and pharmaceuticals industries. The authors discuss flow through fixed beds, elutriation Intended for machinery, mechanism, and device designers; engineers, technicians; and inventors and students, this fourth edition includes a glossary of machine design and kinematics terms; material on robotics; and information on nanotechnology and mechanisms applications.

Comprehensive and practical guide to the selection and design of a wide range of chemical process equipment. Emphasis is placed on real-world process design and performance of equipment. Provides examples of successful applications, with numerous drawings, graphs, and tables to show the functioning and performance of the equipment. Equipment rating forms and manufacturers’ questionnaires are collected to illustrate the data essential to process design. Includes a chapter on equipment cost and addresses economic concerns. * Practical guide to the selection and design of a wide range of chemical process equipment. Examples of successful, real-world applications are provided. * Fully revised and updated with valuable shortcut methods, rules of thumb, and equipment rating forms and manufacturers’ questionnaires have been collected to demonstrate the design process. Many line drawings, graphs, and tables illustrate performance data. * Chapter 19 has been expanded to cover new information on membrane separation. Approximately 100 worked examples are included. End of chapter references also are provided.

The importance of economical production of agricultural materials, especially crops and animal products serving as base materials for foodstuffs, and of their technological processing (mechanical operations, storage, handling etc.) is ever-increasing. During technological processes agricultural materials may be exposed to various mechanical, thermal, electrical, optical and acoustical (e.g. ultrasonic) effects. To ensure optimal design of such processes, the interactions between biological materials and the physical effects acting on them, as well as the general laws governing the same, must be known. The mechanics of agricultural materials, as a scientific discipline, is still being developed, and therefore has no exact methods as yet, in many cases. However, the methods developed so far can already be utilized successfully for designing and optimizing machines and technological processes. This present work is the first attempt to summarize the calculation methods developed in the main fields of agricultural mechanics, and to indicate the material laws involved on the basis of a unified approach, with all relevant physico-mechanical properties taken into account. The book deals with material properties, gives the necessary theoretical background for description of the mechanical behaviour of these materials including modern powerful calculation methods and finally discusses a large number of experimental results. Many of them can only be found in this book. Special attention is paid to the unified approach concerning theory and practice. The systematic treatment of the material makes the book useful to a wide circle of designers, researchers and students in the field of agricultural engineering. The book can also be used as a textbook at technical and agricultural universities.

Covers the design and construction of material transport systems that carry free-flowing or granular material via pipes or ducts, by high-velocity air stream. Includes new innovations in low- and high-pressure conveying systems using pressure or blow tanks. Explains the handling characteristics of over 45 new substances. Includes revised and expanded coverage of system components plus a new section on conveying for the foundry and power industries.

Particle Technology and Engineering presents the basic knowledge and fundamental concepts that are needed by engineers dealing with particles and powders. The book provides a comprehensive reference and introduction to the topic, ranging from single particle characterization to bulk powder properties, from particle-particle interaction to particle-fluid interaction, from fundamental mechanics to advanced computational mechanics for particle and powder systems. The content focuses on fundamental concepts, mechanistic analysis and computational approaches. The first six chapters present basic information on properties of single particles and powder systems and their characterisation (covering the fundamental characteristics of bulk solids (powders) and building an understanding of density, surface area, porosity, and flow), as well as particle-fluid interactions, gas-solid and liquid-solid systems, with applications in fluidization and pneumatic conveying. The last four chapters have an emphasis on the mechanics of particle and powder systems, including the mechanical behaviour of powder systems during storage and flow, contact mechanics of particles, discrete element methods for modelling particle systems, and finite element methods for analysing powder systems. This thorough guide is beneficial to undergraduates in chemical and other types of engineering, to chemical and process engineers in industry, and early stage researchers. It also provides a reference to experienced researchers on mathematical and mechanistic analysis of particulate systems, and on advanced computational methods.

Provides a simple introduction to core topics in particle technology: characterisation of particles and powders: interaction between particles, gases and liquids; and some useful examples of gas-solid and liquid-solid systems Introduces the principles and applications of two useful computational approaches: discrete element modelling and finite element modelling Enables engineers to build their knowledge and skills and
to enhance their mechanistic understanding of particulate systems

Handbook of Pneumatic Conveying Engineering

CRC Press

Now in dynamic full color, **SI ENGINEERING FUNDAMENTALS: AN INTRODUCTION TO ENGINEERING**, 5e helps students develop the strong problem-solving skills and solid foundation in fundamental principles they will need to become analytical, detail-oriented, and creative engineers. The book opens with an overview of what engineers do, an inside glimpse of the various areas of specialization, and a straightforward look at what it takes to succeed. It then covers the basic physical concepts and laws that students will encounter on the job. Professional Profiles throughout the text highlight the work of practicing engineers from around the globe, tying in the fundamental principles and applying them to professional engineering. Using a flexible, modular format, the book demonstrates how engineers apply physical and chemical laws and principles, as well as mathematics, to design, test, and supervise the production of millions of parts, products, and services that people use every day. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.

Solve any mechanical engineering problem quickly and easily This trusted compendium of calculation methods delivers fast, accurate solutions to the toughest day-to-day mechanical engineering problems. You will find numbered, step-by-step procedures for solving specific problems together with worked-out examples that give numerical results for the calculation. Covers: Power Generation; Plant and Facilities Engineering; Environmental Control; Design Engineering New Edition features methods for automatic and digital control; alternative and renewable energy sources; plastics in engineering design

This book presents select peer reviewed proceedings of the International Conference on Applied Mechanical Engineering Research (ICAMER 2019). The books examines various areas of mechanical engineering namely design, thermal, materials, manufacturing and industrial engineering covering topics like FEA, optimization, vibrations, condition monitoring, tribology, CFD, IC engines, turbo-machines, automobiles, manufacturing processes, machining, CAM, additive manufacturing, modelling and simulation of manufacturing processing, optimization of manufacturing processing, supply chain management, and operations management. In addition, recent studies on composite materials, materials characterization, fracture and fatigue, advanced materials, energy storage, green building, phase change materials and structural change monitoring are also covered. Given the contents, this book will be useful for students, researchers and professionals working in mechanical engineering and allied fields.

Pneumatic power is ideal for the ever increasing range of ‘light’ applications in which a cheap, clean, adaptable source of power is needed. Used in conjunction with microprocessor control it forms the basis of manufacturing automation from basic conveying and handling lines to complex robotic assembly systems. Training courses and books aimed at the technician have not kept pace with these developments. This book is written to cover the British Fluid Power Association Pneumatics Certificate, which is also awarded as part of CGLI scheme 2340, and is in the process of NVQ accreditation at level 3. ‘Practical Pneumatics’ provides a clear and detailed discussion of pneumatic technology by tackling the principles of pneumatic components and the behaviour of air under compression, during treatment and in applications to pneumatic systems in detail. The non-mathematical approach, the numerous detailed diagrams and the many exercises and examples explain concepts clearly and concisely and provide students with a foundation from which to develop practical competence. Featuring in-depth discussions on tensile and compressive properties, shear properties, strength, hardness, environmental effects, and creep crack growth. "Mechanical Properties of Engineered Materials" considers computation of principal stresses and strains, mechanical testing, plasticity in ceramics, metals, intermetallics, and polymers, materials selection for thermal shock resistance, the analysis of failure mechanisms such as fatigue, fracture, and creep, and fatigue life prediction. It is a top-shelf reference for professionals and students in materials, chemical, mechanical, corrosion, industrial, civil, and maintenance engineering; and surface chemistry. Automation is quickly becoming the standard across nearly every area of manufacturing. Pneumatic actuators play a very important role in modern automation systems, yet until now there has been no book that takes into account the recent progress not only in the pneumatic systems themselves but also in the integration of mechatronics, electronic control systems, and modern control algorithms with pneumatic actuating systems. Filling this void, Pneumatic Actuating Systems for Automatic Equipment: Structure and Design describes novel constructions along with many of the most commonly applied pneumatic actuating systems. Covering everything from underlying principles to mechanics, numerical modeling, parameter calculation, and control algorithms, this book uses real-world-tested designs to fully illustrate the systems and components presented. After an in-depth discussion of the various types of pneumatic actuators and electro-pneumatic control valves, the authors explain how to determine the system state variables and then examine open-loop and closed-loop pneumatic actuating systems in detail. They emphasize both the construction and dynamics of actuators to demonstrate and verify their properties before implementation. Pneumatic Actuating Systems for Automatic Equipment: Structure and Design offers a modern treatment of the subject along with applied knowledge using practical examples and exercises to highlight the concepts. It is an ideal resource to bring you up to date on this critical component of automation. Outlines the concepts of chemical engineering so that non-chemical engineers can interface with and understand basic chemical engineering concepts. Overviews the difference between laboratory and industrial scale practice of chemistry, consequences of mistakes, and approaches needed to scale a lab reaction process to an operating scale. Covers basics of chemical reaction engineering, mass, energy, and fluid energy balances, how economics are scaled, and the nature of various types of flow sheets and how they are developed vs. time of a project. Details the basics of fluid flow and transport, how fluid flow is characterized and explains the difference between positive displacement and centrifugal pumps along with their limitations and safety aspects of these differences. Reviews the importance and approaches to controlling chemical processes and the safety aspects of controlling chemical processes. Reviews the important chemical engineering design aspects of unit operations including distillation, absorption and stripping, adsorption, evaporation and crystallization, drying and solids handling, polymer manufacture, and the basics of tank and agitation system design. The most complete guide of its kind, this is the standard handbook for chemical and process engineers. All new material on fluid flow, long pipe, fractionators, separators and accumulators, cooling towers, gas treating, blending, troubleshooting field cases, gas solubility, and density of irregular solids. This substantial addition of material will also include conversion tables and a new appendix, "Shortcut Equipment Design Methods." This convenient volume helps solve field engineering problems with its hundreds of common sense techniques, shortcuts, and calculations. Here, in a compact, easy-to-use format, are practical tips, handy formulas, correlations, curves, charts, tables, and shortcut methods that will save engineers valuable time and effort. Hundreds of common sense techniques and calculations help users quickly and accurately solve day-to-day design, operations, and equipment problems. An understanding of the properties and the handling characteristics of liquids and gases has long been regarded as an essential requirement for most practising engineers. It is therefore not surprising that, over the years, there has been a regular appearance of books dealing with the fundamentals of fluid mechanics, fluid flow, hydraulics and related topics. What is surprising is that there has been no parallel development of the related discipline of Bulk Solids Handling, despite its increasing importance in modern industry across the world. It is only very recently that a structured approach to the teaching, and learning, of the subject has begun to evolve. A reason for the slow emergence of Bulk Solids Handling as an accepted topic of study in academic courses on mechanical, agricultural, chemical, mining and civil engineering is perhaps that the practice is so often taken for granted. Certainly the variety of materials being handled in bulk is almost endless, ranging in size from fine dust to rocks, in value from refuse to gold, and in temperature from deep-frozen peas to near-molten metal.
This broad-based book covers the three major areas of Chemical Engineering. Most of the books in the market involve one of the individual areas, namely, Fluid Mechanics, Heat Transfer or Mass Transfer, rather than all the three. This book presents this material in a single source. This avoids the user having to refer to a number of books to obtain information. Most published books covering all the three areas in a single source emphasize theory rather than practical issues. This book is written with emphasis on practice with brief theoretical concepts in the form of questions and answers, not adopting stereo-typed question-answer approach practiced in certain books in the market, bridging the two areas of theory and practice with respect to the core areas of chemical engineering. Most parts of the book are easily understandable by those who are not experts in the field. Fluid Mechanics chapters include basics on non-Newtonian systems which, for instance find importance in polymer and food processing, flow through piping, flow measurement, pumps, mixing technology and fluidization and two phase flow. For example it covers types of pumps and valves, membranes and areas of their use, different equipment commonly used in chemical industry and their merits and drawbacks. Heat Transfer chapters cover the basics involved in conduction, convection and radiation, with emphasis on insulation, heat exchangers, evaporators, condensers, reboilers and fired heaters. Design methods, performance, operational issues and maintenance problems are highlighted. Topics such as heat pipes, heat pumps, heat tracing, steam traps, refrigeration, cooling of electronic devices, NOx control find place in the book. Mass transfer chapters cover basics such as diffusion, theories, analogies, mass transfer coefficients and mass transfer with chemical reaction, equipment such as tray and packed columns, column internals including structural packings, design, operational and installation issues, drums and separators are discussed in good detail. Absorption, distillation, extraction and leaching with applications and design methods, including emerging practices involving Divided Wall and Petlik column arrangements, multicomponent separations, supercritical solvent extraction find place in the book.

Copyright: 6548854dcbade2c95804256459c3472c